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Abstract Transgenic and gene knockout rodent models are

primordial to study pathophysiological processes in car-

diovascular research. Over time, cardiac MRI has become a

gold standard for in vivo evaluation of such models.

Technical advances have led to the development of mag-

nets with increasingly high field strength, allowing specific

investigation of cardiac anatomy, global and regional

function, viability, perfusion or vascular parameters. The

aim of this report is to provide a review of the various

sequences and techniques available to image mice on

7–11.7 T magnets and relevant to the clinical setting in

humans. Specific technical aspects due to the rise of the

magnetic field are also discussed.

Keywords High field � MRI � Cardiovascular diseases �
Mouse

Abbreviations

ASL Arterial spin labeling

CEST Chemical exchange saturation transfer

CS Compressed sensing

CT Computed tomography

DENSE Displacement encoding with stimulated echoes

FLASH Fast low angle shot

FPP First pass perfusion

IR Inversion recovery

LGE Late gadolinium enhancement

MBF Myocardial blood flow

MEMRI Manganese-enhance magnetic resonance

imaging

MRA Magnetic resonance angiography

MRS Magnetic resonance spectroscopy

MRSI Magnetic resonance spectroscopic imaging

PET Positron emission tomography

PC Phase contrast

RF Radiofrequency

SNR Signal-to-noise ratio

SPIONs Superparamagnetic iron oxide nanoparticles

TOF Time of flight

HF High field

Venc Velocity encoding

Introduction

Transgenic and knockout mice models are currently fun-

damental tools to study pathophysiological processes and

therapeutic interventions in cardiovascular research. In

recent years, high field (HF) MRI has evolved to become

& Laetitia Vanhoutte

laetitia.vanhoutte@uclouvain.be

1 Department of Paediatric Cardiology, Cliniques

universitaires Saint Luc, Université Catholique de Louvain

(UCL), Brussels, Belgium

2 Pole of Pharmacology and Therapeutics (FATH), Institute of

Experimental and Clinical Research (IREC), Université
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an essential tool for experimental imaging, with an increase

in reported studies characterizing these small animal

models with MR systems operating at 7 T or higher.

Indeed, since its introduction in the 1970s by Paul C.

Lauterbur and Sir Peter Mansfield, improvements have led

to spectacular development of MRI technology, allowing

now to image hearts of rodents (\200 mg weight) in vivo

at heart rates up to 600 bpm. The specific advantages of HF

cardiac MR over other techniques such as echocardiogra-

phy are its high accuracy and reproducibility [7, 137] and

large versatility with the ability to provide insight into

many physiological processes. Similar to human low-field

CMR, HF CMR in rodents allows comprehensive evalua-

tion of various parameters by different pulse sequences, not

only allowing assessment of systolic and diastolic function

but also of myocardial perfusion, viability, flow and

molecular imaging [4, 44, 98, 116, 148, 159]. This work is

primarily addressed to nonspecialist readers who have

basic knowledge in (clinical) MRI and cardiology and are

likely to perform cardiac HF MRI on small experimental

animals. Basic principles of MRI [151] and thorough

technical aspects [14] have been reviewed elsewhere. Here,

we seek to provide a general overview of current imaging

techniques and sequences available for HF imaging in mice

and to define their interest in connection with clinical

applications in humans.

Technical considerations

Hardware

HF MR Systems are dedicated small bore magnets allow-

ing animal imaging at very high field strengths ([7 T). The

main advantage of increasing field strength for MR imag-

ing is the increased signal-to-noise ratio (SNR) allowing

higher resolution. The downtrades are greater field inho-

mogeneity and susceptibility to artifacts and higher

radiofrequency (RF) power deposition in tissue—measured

by the specific absorption rate (SAR) [101]. Overall,

although some authors report nice image acquisitions at

clinical field strength (1.5–3 T) with optimized coils

[29, 53, 62], or at the very high field of 17.6 T [60, 61], it is

generally admitted that the range of 7–11.7 T offers the

best trade off for most applications in small animals [48].

Systems can be either horizontally or vertically mounted.

Vertical position of the magnet (as encountered in some

biochemistry-based core facilities) although unphysiologi-

cal and less practical for monitoring and customizing the

probes, does not seem to interfere with cardiac hemody-

namics [123, 173].

Various RF coil designs have been proposed to maxi-

mize SNR: surface coils, linear volume coils or birdcages

[46, 98]. CMR in mice using a cryogenic quadrature RF

coil has also been reported, offering significant gain in

SNR compared to conventional coils operating at room

temperature (see ‘‘Improving imaging speed: parallel

imaging, compressed sensing (CS) and cryoprobes’’) [167].

In small animals applications, mid-range coils are usually

used, which means that the product (fd) of the frequency

f and the coil diameter d is in the range 2–30 MHz-m.

Animal handling and gating strategies

Small animal CMR is particularly demanding in terms of

experimental setup installation and recording of vital

parameters, in particular because of the small body size of

the animals and their high cardiac and respiratory fre-

quency, which increases the magnitude of motion artifacts.

To perform CMR procedures in living animals, general

anesthesia is required throughout the acquisition. Cur-

rently, the preferred approach is isoflurane inhalation,

because it causes minimal hemodynamic depression,

allows short induction and fast awakening times, together

with and easy regulation of anesthesia depth [74, 85]. In

general, anesthesia is induced by placing the animal in a

closed container using 3–5 % isoflurane for 2–3 min. Then

the animal is installed in the scanner and anesthesia is

maintained by continuous inhalation of 0.5–1.5 % isoflu-

rane through a nose cone. Because anesthesia leads to rapid

heat loss, the core body temperature must be carefully

followed with a rectal probe and regulated by external

heating with a heating blanket. ECG signal and other vital

parameters can be recorded with specific monitoring sys-

tems. ECG electrodes are wrapped around the paws. Dur-

ing anesthesia, the rodents remain under spontaneous

breathing, and respiratory rate is monitored by pneumatic

sensor placed under the animal. The depth of anesthesia is

modulated during the examination to remain within phys-

iological heart rates (around 400–600 heartbeats/min) and

respiration rates (around 50–100 cycles/min). This is

allowed to remain within the physiological loading and

pressure states, and ensures a proper reproducibility of the

data [34, 163]. ECG and respiration gating signals can be

integrated in the MR systems to allow prospective or ret-

rospective trigger of the MRI acquisition, and minimize

motion artifacts as breath holding is impossible in small

animals.

Because at HF ECG signal is often degraded by the

magnetohydrodynamic effects, RF pulses, and gradient

switching during scanning [53], alternative techniques to

the classical gating have been reported for rodents, using

optimized gating strategies with cardiorespiratory moni-

toring [6, 33] or complete monitoring-free approaches

[63–65, 103]. Optimized approaches developed to speed up

image acquisitions are developed in ‘‘Improving imaging
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speed: parallel imaging, compressed sensing (CS) and

cryoprobes’’.

Evaluation of cardiac volumes, mass and function

The assessment of left ventricular function and volumes is

fundamental in the comprehensive evaluation of animal

models mimicking human diseases. Because of its high

availability and ease, 2D-echocardiography remains the

most commonly used noninvasive method for in vivo

evaluation of rodent ventricular function. Yet it suffers

from well-documented limitations, such as restricted

acoustic windows, the need for an experienced operator

and geometrical assumptions used to extrapolate data, as

generally only 2- and 4-chambers long-axis slices or

parasternal M-mode images can be acquired. CMR, being a

true three-dimensional imaging technique, with an unre-

stricted access to the heart from all directions allows

acquisitions in various directions (i.e., 4-, 3-, 2-chambers

long axis and continuous stacks of serial short-axis ima-

ges), and therefore, provides a better reproducibility

[7, 137, 150] of measurements of the biventricular volumes

and masses.

CMR assessment of biventricular function is typically

acquired using segmented k-space fast gradient echo

sequence (fast low angle shot—FLASH) with short TE,

either with prospective gating or self-gated navigator

sequences with retrospective reordering of images, applied

to obtain short-axis views covering the entire left and right

ventricular volumes. Temporal resolution of 10–20 phases

per heartbeat (i.e., 5–10 ms) can be obtained, while spatial

resolution typically approximates 0.1–0.2 mm. Generally,

a stack of 6–8 serial 1 mm-thick short-axis slices is pre-

scribed to cover the entire left and right ventricles. Ven-

tricular volumes and masses are usually derived using

Simpson’s method where endocardial and epicardial bor-

ders are drawn on serial short-axis slices and volumes are

derived by summing compartment area multiplied by slice

thickness (Fig. 1). Masses can be extrapolated as the

myocardial volume (difference between epicardial and

endocardial volumes) multiplied by the myocardial specific

density (1.05 g/cm3).

Serial assessments of systolic function in various mouse

models have already been described in the literature, even

in neonatal mice [175], and have proved high accuracy in

comparison to phantom measurements [120], ex vivo data

[120, 123, 163] and invasive flow measurements [104]. The

Fig. 1 Long axis two-chamber

(a), long axis four-chamber

(b) and short-axis (c, d) views
of mouse hearts obtained with a

FLASH sequence, at 11.7 T

(Biospec, Bruker, Ettlingen,

Germany). Endocardial (red)

and epicardial (green) outlines

were drawn in end-diastolic

(c) and end-systolic (d) phases.
Imaging parameters: TE/TR

1.5 ms/4.1 ms; FOV

30.0 9 30.0 mm; slice

thickness 1.25 mm
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high reproducibility of the method has also been assessed

in several publications [59, 120, 123, 150, 163]. Therefore,

the technique is ideally applied to study genetic, pharma-

cological or surgical interventions in mouse models of

cardiovascular diseases.

By contrast, diastolic function assessment by CMR in

rodents remains challenging. Drelicharz and colleagues

reported filling rates (FR) derived from time-area curves

obtained in the mid ventricular short-axis plane, as slope

of the beginning part of diastolic limbs. They demon-

strated that this approach allowed a reliable assessment of

diastolic function in a mouse model of dilated car-

diomyopathy at 4.7 T [47, 147] and the technique was

further successfully used by other teams at higher field

[1, 17, 174]. More recently, Buonincontri et al. used a

similar (simplified) approach derived from echocardio-

graphic color kinesis (Echo-CK), to measure diastolic

index in a mouse model of diabetes ([30], at 4.7 T), a

concept previously described and validated in humans

[113]. Ideally, these measurements require acquisitions

with high temporal resolution (C20 phases), to improve

their reliability. If their use remains limited so far, they

could still be easily transposed to other experimental

models in the near future.

Intramyocardial function and strain

In models of cardiovascular diseases characterized by

inhomogeneous dyskinetic regions in the myocardium,

detailed quantification of the regional contractile perfor-

mance of the heart may bring additional information to

functional and volumetric indices. Several approaches are

currently available for this purpose.

Tagging

Tagging is a technique in which selective spatial presatu-

ration pulse are noninvasively applied on the image using

delays alternating with nutations for tailored excitation

(DANTE) [102] or spatial modulation of magnetization

(SPAMM) [11] prepulse techniques prior to the acquisition

of cine FLASH sequences. This results in stamping the

myocardium with orthogonal lines or grid patterns (tags)

which can then be followed during the cardiac cycle. Strain

and torsion can be quantified with specific methods, such as

the harmonic phase (HARP) based analysis [114] (Fig. 2).

The use of this sequence in small rodents at high field

remains challenging because of the high heart rate requir-

ing very short echo times to achieve sufficient temporal

resolution during the cardiac cycle. Also, these images

must be acquired using prospective gating with quality

ECG to adequately deposit the tagging pattern in early

systole and avoid subsequent taggrid deformation [90].

Furthermore, as a consequence of the small anatomy, very

high spatial resolution and small tag spacing are required to

characterize the strain. Finally, the post-processing and

image analysis need to be adapted to lower SNR.

Some authors described successful applications of tag-

ging sequences to rodents at field strengths C7 T [90, 132],

showing that it can provide more sensitive measures of

functional alterations than global functional indexes,

helping to better understand the pathophysiology of various

cardiovascular diseases, such as dilated cardiomyopathy

[37, 57, 58, 141], restrictive cardiomyopathy [69] or car-

diac dysfunction accompanying neurodegenerative dis-

eases ([89], at 4.7 T).

Besides conventional tagging, other approaches have

also successfully been used for deformation imaging at HF,

Fig. 2 SPAMM tagged images in mice. Compared to the reference

image in end-diastole (a), the tag lines show clear contraction and

twist of myocardium in end-systole (b). Imaging parameters: TE/TR

1.8 ms/12 ms; tag distance 0.3 mm, tag thickness 1 mm.

c Representative short-axis strain map obtained with HARP software

(Diagnosoft, Inc., Baltimore, MD, USA). Blue zones correspond to

the highest deformation

46 Page 4 of 20 Basic Res Cardiol (2016) 111:46

123



tissue phase mapping (TPM) and displacement encoding

with stimulated echoes (DENSE). Vector-based feature

tracking software for strain measurement on classical cine

images has also been shown feasible [75, 119].

To our best knowledge, only one study has compared

echocardiographic and HF MRI strain measurements in

mice. In their work, Azam et al. demonstrated that although

echocardiographic vector velocity imaging seemed to be

feasible and accurate, strains measured with DENSE

method were more variable than those measured with MRI

with similar variability for radial and circumferential

strains [12].

Displacement encoding with stimulated echoes

(DENSE)

DENSE is based on a stimulated echo sequence, in which

the displacement of the myocardium is directly encoded

into the phase of the MR signal, allowing strain quantifi-

cation with high spatial resolution [5]. If its preclinical

application has been more limited than tagging so far,

technical adjustments allowing multiphase application

[177], 3D acquisitions [178] and simplified post-processing

[52, 140], could allow wider use of DENSE MRI in mice in

the future.

Tissue phase mapping (TPM)

Dubbed phase contrast imaging or tissue phase mapping

(TPM) provides pixel-wise encoding of the velocity—

rather than displacement—in its phase images (see ‘‘Phase

contrast angiography’’). Different studies have successfully

determined myocardial velocities in mice at different time

point of cardiac cycles using this technique. If first studies

were using bright blood contrast [60, 105, 134], blood

suppression has been shown to improve accuracy of mea-

surements in further developments [43, 79]. Baseline val-

ues of normal transmural wall motion pattern have been

carefully established with TPM, allowing further compar-

ison with genetically and surgically manipulated mouse

models [43].

Perfusion, stress imaging and tissue
characterization

Evaluation of myocardial perfusion and stress response is

fundamental for the comprehension of pathophysiology of

various models of cardiac disease. Tissue characterization

(myocardial viability) and infarct visualization allows the

comprehensive understanding of models of ischemic heart

disease and subsequent myocardial remodeling.

Perfusion

Myocardial perfusion (i.e., myocardial blood flow per gram

of tissue expressed as ml/g/min) is a key parameter in the

investigation of cardiac diseases, as it allows characterizing

the relationship between blood flow (oxygen delivery) and

cardiac contraction in cardiac diseases. Currently, there are

two different approaches to evaluate myocardial perfusion

using HF CMR: (1) gadolinium-enhanced first pass perfu-

sion (FPP) after the bolus injection of exogen contrast

agent through a vein, and (2) arterial spin labeling (ASL)

which makes use of intrinsic properties of the protons, and

does not require contrast injections.

FPP sequences make use of the intravenous injection of

gadolinium chelated contrast agents, which present param-

agnetic effects. At moderate doses these agents shorten T1

times of the surrounding tissues in direct proportion to their

concentration. At high doses the relation may become non-

linear because of additional T2 and T2* susceptibility

effects. In the literature, contrast doses between 0.1 and

0.9 mmol/kg have been used in rodents. Because of the fast

systemic blood circulation time (4–5 s) [40] added to the

general limitations of cardiac imaging in rodents, HF con-

trast-enhanced FPP CMR requires very fast acquisitions. At

the same time, adequate spatial resolution has to be pre-

served, to visualize the regional myocardial inflow of the

gadolinium. These challenges explain the very recent

emergence of studies on FPP CMR in the experimental field.

They all rely on rapid acquisition of saturation recovery

sequences during the passage of a contrast bolus through the

heart. Parameters like myocardial blood flow (MBF),

myocardial tissue function (TF) and arterial input function

(AIF) could be precisely quantified using dual-bolus

[9, 154, 155] or dual-contrast [106] strategies either by tracer

kinetic modeling or Fermi function deconvolution [76]. FPP

MRI has successfully been applied at HF inmousemodels of

myocardial infarction [9, 40], cardiac hypertrophy [154] and

obesity [106], with a good reproducibility of the regional

quantitative perfusion estimates [155].

ASL has been described for more than 10 years to

investigate myocardial perfusion in small animals. This

approach, described by Bauer et al. [21], and further vali-

dated by comparison to the well-established microsphere

technique in the isolated heart [20] and in the intact animal

[170], does not require injection of external contrast agent,

but makes use of modification of the magnetic properties of

hydrogen protons circulating in the blood entering the

imaging slice. As a consequence, image intensity changes

occur depending on blood supply to the tissue. Circulating

spins are labeled through an RF impulsion, and the

myocardial blood flow (MBF) is detected by comparing the

resulting tissue T1 relaxation time change between an
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acquisition with labeled and unlabeled protons from adja-

cent slice. Practically, a gradient echo sequence is used to

obtain a stack of images at an array of delay times fol-

lowing slice-selective (SS) and non selective (NS) inver-

sions. Then myocardial perfusion can be measured in ml/g/

min through the following formula: P = (1/T1ss - 1/

T1ns)T1ns/T1bloodk, where k is the blood/tissue partition

coefficient [48]. At HF, the ASL sequence benefits from a

better difference between T1ns and T1SS, this increases

with the magnetic field strength for a given level of per-

fusion [159]. Over time, the ASL sequence has been

properly applied to measure MBF in different mouse

models of cardiovascular diseases, after some method-

ological adjustments to improve the resolution and scan

time [2, 32, 55, 80, 135, 144, 162], with a proven repro-

ducibility [32].

Another technique, the blood oxygen dependent imaging

(BOLD), has also been considered an alternative perfusion

sequence because of its wide use in functional neu-

roimaging [19]. It makes use of the modification of T2

times of deoxygenated blood. However, many technical

considerations have limited its transfer for cardiac imaging

[128]. In particular, at high field, many parameters beside

deoxyHb/oxyHb may contribute to susceptibility differ-

ences [84], and so far, no cardiac study was published in

rodents at HF.

Stress-CMR and cardiac reserve

The acquisition of functional data during inotropic stimu-

lation is useful for the detection of ventricular filling

abnormalities and to unmask early dysfunction, not

detectable in the resting state. In humans, cardiac reserve is

also an effective predictor for survival [72]. Stress imaging

can be performed in rodents before and after b1-adrenergic
stimulation induced by injection of dobutamine at doses

ranging from 4 to 16lg/kg/min intravenously or from 20 to

40lg/kg/min intraperitoneally [147].

Inherent challenges to the use of stress-CMR in rodents

are the increase in their already high heart rate, compli-

cating ECG-triggered data acquisition, and the need for

reproducible measurements. These difficulties have been

overcome by optimization of classic functional sequences

for higher temporal resolution. Wiesmann et al. were the

first to describe the technique at HF in normal and

chronically failing mouse hearts [174]. Other studies have

then followed on various models of cardiovascular dis-

eases [131, 136, 143], bringing additional interesting data,

inter alia the role played by high-capacity creatine kinase

system CK/PCr [143] and the neuronal nitric oxide syn-

thase nNOS ([160], at 4.7 T) in inotropic and lusitropic

responses to dobutamine but not in the cardiac function at

rest.

Late gadolinium enhancement and myocardial

viability

In clinical imaging, late gadolinium enhancement (LGE)

CMR is a gold standard for the investigation of myocardial

viability, because of its superiority for the detection of

small myocardial lesions undetectable with nuclear imag-

ing [126]. Viability is also a key prognostic factor in

human cardiovascular diseases.

LGE images are acquired late (at least 10 min) after the

intravenous or intraperitoneal injection of gadolinium-

based contrast agents. The technique is based on the

principle that Gd-chelates have an extravascular distribu-

tion volume. Infarcted or fibrotic tissues present reduced

cellular and increased extravascular volume, with therefore

higher contrast concentrations at equilibrium, translating

into shorter T1 times. To obtain optimal T1 weighing

contrast between normal and abnormal myocardium, an

inversion recovery (IR) technique is applied, nulling the

signal intensity for normal myocardium (Fig. 3). Optimal

inversion time to null viable tissue is previously defined

with a look-locker sequence. This approach—well-estab-

lished in clinical practice—has been successfully described

at HF, validated by the great correlation with ex vivo data,

and became soon an accepted modality for the study of

preclinical models [24, 35, 54, 112, 117].

Nevertheless, applying this technique at HF to rodents

remains quite challenging, as their rapid heart rate often

results in suboptimal ECG triggering. This may impact the

effectiveness of IR sequences, as they rely on a constant

time delay between successive IR pre-pulses. Hence, some

authors argue that a classical cine FLASH sequence could

be used for LGE in place of IR MRI for infarct size

assessment, because of its high spatial and temporal reso-

lution. Indeed, unlike at clinical field strength, it seems to

provide similar accuracy at high field while being more

robust, faster and easier to use [118]. Whatever the type of

acquisition used, LGE brings precious information on the

pathophysiology of diseases impairing the viability of the

myocardium.

Manganese-enhanced MRI (MEMRI)

Similar to gadolinium, manganese (Mn2?) is paramagnetic

and decreases T1 in surrounding tissues. In addition, it is

actively pumped through the voltage-gated L-type Ca2?

channels in cardiomyocytes. Exploiting these specific

properties, manganese-enhanced MRI (MEMRI) has been

applied at HF in mice for two main applications. First,

dynamic MEMRI allows specific measurement of Ca2?

channels activity, using T1-imaging at baseline and after

infusion of dobutamine. Signal enhancement relates then to

calcium influx and inotropic response [8, 23, 68, 168].
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Second, infarct zone can be accurately delineated after

injection of MnCl2, as the uptake of Mn2? is greater in

functional regions [67].

Compared to histology, MEMRI is more accurate to

determine infarct size than LGE, as the latter tends to

overestimate nonviable zone at acute stage. However,

unlike MEMRI, LGE has the advantage of showing a

decrease in signal when myocardial infarction changes

from the acute to the chronic stage [129].

Although MEMRI represents a powerful preclinical tool

for the study of ischemic disease, its transfer to the clinical

field is hampered by the potential toxicity of free Mn2?.

Relaxometry

The strength of MRI remains its powerful soft tissue con-

trast, based on the intrinsic relaxation properties T1 and T2.

Quantitative measurement of these parameters, also refer-

red to as quantitative relaxometry, can be informative in

various pathophysiological processes, and has the advan-

tage of objectively measuring biological changes whereas

classical techniques based on qualitative or semiquantita-

tive evaluation may under- or overestimate disease pro-

cesses. Hence, these last years, T1-, T2- and T2*-weighted

imaging already used for clinical applications has emerged

in the field of HF CMR in rodents, with or without the use

of contrast agents.

T1 mapping

T1 is the longitudinal (or spin–lattice) relaxation time of a

tissue. It is known to be prolonged in some conditions like

fibrosis, edema and amyloid deposition, and reduced in

lipid accumulation, siderosis, hemorrhage and in acute

infarction [27]. Parametric maps for T1 are obtained by

applying different T1 weighting to a series of images so

that each voxel can be assigned a T1 value. They can be

displayed using color or threshold scales to enable visual

interpretation.

Since the description of the modified look-locker

inversion recovery method (MOLLI) by Messroghli et al.

[99], which has simplified the acquisition in comparison

to the classical look-locker sequence [92], the clinical use

of T1 mapping has never stopped to spread. Even if more

standardized protocols are needed in this rapidly evolving

field, myocardial T1 mapping is already used in numerous

hospital centers and has proven its diagnostic and prog-

nostic value in both cardiac diseases (acute coronary

syndromes, myocarditis, hypertrophic and dilated car-

diomyopathy, congenital heart diseases, heart failure) and

cardiac involvement in systemic diseases (amyloidosis,

Anderson-Fabry disease, siderosis, diffuse fibrosis of

various origins) [49, 100, 121]. In the specific case of

diffuse myocardial fibrosis, T1 mapping is considered as

superior to the highly invasive and partial endomyocardial

biopsies and the indirect technique of LGE. Indeed, it

provides a quantitative T1 relaxation time per voxel,

instead of a qualitative T1 contrast, allowing discrimina-

tion of remaining healthy areas [156].

T1-contrast is also the most used for parametric map-

ping in mice at HF. T1-mapping is commonly acquired

with a sequence based on the look-locker method although

some authors described SNAPSHOT-FLASH Inversion

Recovery (SNAP-IR) [24, 124] or variable flip angle [39]

strategies for the acquisition. In mouse, the acquisition is

mainly made in combination with a contrast agent,

gadolinium [24, 39, 138] or manganese

[8, 77, 87, 88, 168, 169]. Up to now, the technique has been

successfully applied to murine models of myocardial

infarction [24, 39, 168], cardiac hypertrophy [8, 138] and

dystrophinopathy [77]. Various applications have been

studied: quantification of infarct size [24, 39, 168], iden-

tification of potentially salvageable myocardium [168] and

evaluation of monocyte and macrophage spatiotemporal

kinetics [107] in the vicinity of a myocardial infarction site,

Fig. 3 Long-axis inversion

recovery T1-weighted MR

image in a mouse with LAD

ligation, 20 min after peritoneal

injection of a 0.5 mmol/kg

bolus of gadolinium DTPA.

Limits between the nonviable

infarcted myocardium

(hyperenhanced zone), and the

healthy myocardium (dark

zone) are well visible (arrows).

Imaging parameters: TE/TR

2.2 ms/4.5 ms, inversion time

350 ms
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quantification of focal and diffuse fibrosis [138], or

detection of changes in Ca2? channels activity in combi-

nation with MEMRI [8, 77, 168, 169]. T1 mapping can also

provide valuable information on the pharmacology of

contrast agents, and as mentioned earlier, quantitative T1

measurements are essential for perfusion studies based on

the ASL technique.

T2 and T2* mapping

Other parametric mappings have not received as much

attention as T1-mapping in mice. Nevertheless, they can

provide valuable information in the field of cardiovascular

research.

T2 is the transversal (or spin–spin) relaxation time.

Since T2-weighted imaging is sensitive to liquids, para-

metric maps for T2 have been described in mouse models

of MI to identify edema and area at risk [22, 25, 41, 123],

with different strategies of acquisition. It has also been

successfully applied to a mouse model of diabetes, with an

adequate quantification of fibrosis [28].

Of note, Aguor et al. have also developed a T2* map-

ping in a mouse model of myocardial infarction, using a

multi gradient echo sequence. They showed that T2*-

weighted images could be used to discriminate between

acute and chronic phase of MI, as a reduction of T2* was

observed with infarct age, probably because of the pres-

ence of iron [3]. Potential interest of such sequence in

mouse models of chronic iron overload has also been

assessed at field\7 T [110], but still need further valida-

tion at HF, as T2* is very sensitive to large scale magnetic

field homogeneities, and may be difficult to measure in

case of high iron concentration, as signal decay may

become rapid [130].

MR angiography

The increasing number of transgenic murine models

mimicking vascular pathophysiological processes, and the

growing awareness of the importance of some hemody-

namic parameters as independent prognostic factors for

morbidity and mortality in cardiovascular diseases [164]

has led to an interest in developing reliable MRI techniques

for the study of vascular parameters in rodents. If

gadolinium-enhanced angiography is often used in the

clinical field, the very fast washout of conventional low-

molecular weight contrast agents such as Gd-DTPA after

injection renders it difficult to apply to rodents [66].

Together with the high cost of contrast agents, these lim-

itations have led to a wider use of non-contrast MR

angiography (MRA) sequences in preclinical studies, i.e.,

time of flight (TOF) and phase contrast (PC) angiography.

Time of flight angiography

The TOF angiography technique is based on inherent

vessel contrast resulting from the inflow effect. A flow-

compensated gradient echo sequence is applied to a volume

with a very short repetition time, saturating the stationary

tissue, whereas longitudinal magnetization remains maxi-

mal in moving spins. Images obtained are combined using

a technique of reconstruction such as maximum intensity

projection (MIP) resulting in a 3D angiogram.

Classical limitations of TOF angiography are the signal

loss due to spin dephasing when flows are turbulent or too

slow and the progressive saturation of the blood signal in the

imaging volume leading to a loss of contrast in the distal

regions. However, at HF, the angiogram quality clearly

benefits from the higher SNR and longer T1 relaxation times

of background tissues [166]. In addition, preparation tech-

niques have been developed to enhance the vessel-to-back-

ground contrast and its uniformity [122, 145].

If in preclinical studies TOF-MRA is widely used for the

characterization of cerebral vasculature, it has also been

applied with success to various murine models of cardiovas-

cular disease, including mice with carotid artery ligation

[71, 145, 149], hindlimb ischemia [71], aortic aneurysms

[82, 83] and/or mice with a hyperlipidemic pattern [149].

A TOF 3D angiogram of the aortic root obtained in a mouse

model of aortic banding on an 11.7 T MRI machine is shown

in Fig. 4. In such models, the sequence allows longitudinal

study of regional neovascularization processes and vessel

stenosis or dilation. Moreover, Lefrançois et al. were able to

generate a murine whole-body angiogram [86], while Cochet

et al. have characterized mice coronary arteries with a high

spatial resolution (80lm) TOF-MRA. They further assessed

left coronary artery velocitymeasurements and coronary flow

velocity reserve through dynamic MR angiography at seven

successivephases throughout the cardiac cycle [38].The same

method of in vivo quantification of blood velocity based on a

series of TOF acquisitions was already reported in 2009 by

Parzy et al. in mouse carotids and pulmonary arteries [115],

bringing evidence that the TOF technique can bemore than an

anatomical sequence.

Phase contrast angiography

PC-MRA is a functional sequence allowing flow and

velocity measurements. This is performed by applying a

bipolar gradient that causes moving spins to receive mag-

netization dephasing, proportional to their velocity. The

principle may be applied in all three directions (in- and

through-plane) and requires the repetition of sequences

with and without flow encoding to generate, respectively,

magnitude (anatomical) and phase (quantitative) images

(Fig. 5). The encoding gradients are set by the user to
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encode flows within a certain velocity range from -Venc

(velocity encoding) to ?Venc. These Venc values must be

chosen adequately as flow outside this range of values will

present velocity aliasing (or wraparound).

Measuring blood flow velocities (BFV) in rodents is

challenging, as velocities in themouse aortic arch are similar

to those found in human (about 100 cm/s) [73] while the

anatomy is extremely small with aortic cross-sections of a

few millimeters square. For years, Doppler ultrasound has

been largely used to obtain vascular parameters in small

animals’ models of vascular diseases [139]. Unlike this

approach, which is constrained tomeasuring velocities along

transducer orientation, MRI offers the possibility to study

vector component of velocity in any spatial orientation. This

makes it more accurate in the determination and follow-up of

parameters like BFV, wall shear stress (WSS), pulse wave

velocity (PWV) or oscillatory shear index (OSI), even in

curved vasculature. These valuables indexes are known to be

early markers of dysfunction in mice with atherosclerotic

patterns [61, 73, 176].

Fig. 4 a 3D maximum intensity

projection (MIP) of a TOF

angiography of the trunk in a

mouse (anterior view). Blurring

corresponds to artifacts due to

heart motion. Imaging

parameters: TE/TR 2.4/12 ms;

matrix 256 9 256 9 120, slice

thickness 0.4 mm, flip angle

80�. b Details of the aortic arch

and the supra-aortic vasculature,

showing the transverse aortic

stenosis due to surgical banding

(arrow). LCCA left common

carotid artery, RCCA right

common carotid artery, LSCA

left subclavian artery, RSCA

right subclavian artery.

c Sagittal view of the aorta with

FLASH sequence, in the same

animal. The arrow indicates the

transverse aortic constriction

Fig. 5 Transverse FLASH view of the mouse ascending aorta (a) and
corresponding phase contrast magnitude (b) and phase images (c).
The region of interest where aortic flow measurement can be

performed is indicated in green on the phase image. Ao aorta, PA

pulmonary artery. Imaging parameters: TE/TR 2.3/8.7 ms, spatial

resolution 0.138 mm/pixel, slice thickness 1 mm, VENC 250 cm/s
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Cellular and molecular imaging

Although MRI has become one of the preferred imaging

modalities used in cardiology, its resolution remains

insufficient at a cellular or molecular scale, unless

detectable probes or spectroscopic measurements are

employed.

Superparamagnetic iron oxide nanoparticles

(SPIONs)

Over years, different in vivo MRI detectable probes have

been considered for molecular or cellular imaging in small

animal studies, as conventional methods (LGE, T2-

weighted imaging, T2-mapping) remain not specific for a

particular type of tissue process or injury. Among them,

superparamagnetic iron oxide nanoparticles (SPIONs)

represent a powerful tool for cellular MR imaging. After

labeling of stem cells with these small biocompatible

crystalline magnetite structures, cell engraftment, differ-

entiation and viability can be noninvasively monitored

thanks to the high sensitivity of SPIONs for MRI [26]. If so

far, cardiovascular applications in mice at HF remain

scarce [36, 96, 111, 133, 165], it represents a promising

approach for the study and follow-up of stem cell therapy

in the field of cardiology.

Magnetic resonance spectroscopy (MRS) and X-

nuclei MRI

Magnetic resonance spectroscopy (MRS) has made possi-

ble investigation at a molecular level, allowing compre-

hensive assessment of metabolic changes in vivo, by

producing a collection of peaks at various radiofrequen-

cies—the spectrum—representing a considered nucleus in

different chemical environments. The peak position is

determined by chemical bonds and the area under the peak

is related to the amount of the specific nucleus in the region

of interest.

Theoretically, all nuclei with nonzero spin can be

employed for magnetic resonance imaging and spec-

troscopy, with adjustment of scanner hardware and

sequences to select the nucleus-specific frequency and to

enable imaging with sufficient signal-to-noise ratio. Hence,

besides conventional proton resonance spectroscopy (1H

MRS) that represents a powerful technique to study

myocardial content of metabolites, such as lipids and cre-

atine in vivo [1, 13, 17, 18, 56, 125], MRS has also been

successfully developed in rodent models of cardiovascular

diseases for the study of various other nuclei, including
13C, 19F, 31P and 23Na. These nuclei are mostly investi-

gated to noninvasively map regional metabolic processes

in vivo, through combination with 1H MRI acquisitions

Fig. 6 Short-axis 1H and 19F MR images from a mouse thorax

14 days after inducing myocarditis by injection of coxsackievirus B3

and two days after application of PFCs (top row). Merged images

(right) clearly show a homogenous accumulation of PFCs within the

left ventricular wall of treated animals, whereas no 19F signal was

observed within the heart of control animals (bottom). Reproduced

with permission from Jacoby et al. [70]
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providing anatomic information. The combination of both

techniques has brought the term of magnetic resonance

spectroscopic imaging (MRSI).
13C MRS of infused hyperpolarized 1-13C-pyruvate,

allows to monitor activity of the pyruvate dehydrogenase

complex, as is reflects myocardial use of carbohydrates and

their contribution to energetic homeostasis [16, 45]. Low

intrinsic sensitivity of 13C requires combined use of

hyperpolarization techniques such as dynamic nuclear

polarization (DNP) [10].

19F MRI combined with injection of perfluorocarbon

(PFC) allows study of inflammatory processes in the con-

text of cardiac ischemia [50], myocarditis (Fig. 6)

[70, 153], atherosclerotic [152] or thromboembolic pro-

cesses [142]. PFCs are inert, nontoxic carbohydrates with

fluorine that are phagocytized by circulating cells. As 19F is

virtually absent in tissue from animals and humans, fluo-

rine can be detected without any background and with

direct proportionality to the amount of 19F nuclei present in

the tissue, allowing quantitative measurement, whereas use

Fig. 7 Representative 31P MR spectra from selected voxels of the

mouse thorax superimposed with the anatomical 1H MR image

acquired in the same examination. Spatially localized spectra of the

posterior (#1), lateral (#2 and #3), and anterior (#4 and #5) walls, and

the septum (#6) of the heart are displayed. Additionally, spectra from

the lungs (#7) and the skeletal muscle of the animal’s back (#8) are

shown. Reproduced with permission from Flögel et al. [51]
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of gadolinium and oxide-based contrast agents relies on

relaxation time alterations and nonlinear dose–signal

response are often seen at high concentration. Furthermore,

transition into clinical applications is likely feasible for 19F

MRSI, as PFC exhibit a high safety profile according to

preliminary experiments, while concerns related to toxicity

and safety could limit the use of other contrast agents to

humans.

The analysis of ATP and phosphocreatine in tissue

samples is problematic because of the instability of

these molecules. Therefore, the principal method for

measuring components of cardiac energy metabolism

remains phosphorus-31 magnetic resonance spec-

troscopy 31P MRS [108]. This well-established method

has already been applied to various mouse models to

study in vivo cardiac energetic metabolism, as assessed

by the PCr/ATP ratio [1, 15, 16, 42, 51]. Representative
31P MR spectra from selected regions of the mouse

thorax superimposed with the anatomical 1H MR image

are shown in Fig. 7.
23Na MRS reflects the activity of the sodium–potas-

sium pump (Na?/K?-ATPase). As disruption of normal

electrochemical gradients indicates cellular injury or

dysfunction, following regional concentration of Na could

provide precocious information regarding myocardial

viability. Precise localization of infarction could be per-

formed by observing the changes in the magnitude of

sodium signal, since Na concentration is increased by

[200 % in infarcted area [81]. Up to now, only technical

studies have been reported on mice [94, 109], but recent

methodological improvements suggest that further studies

on models of myocardial infarction could soon be

available.

Of note, MRS using other nuclei have been subject to pre-

liminary development in small animals, inter alia oxygen-17

(17O) [93] and rubidium-87 (87Rb) MRS [78]. Detailed

description of these techniques is beyond the scope of this

review.

Chemical exchange saturation transfer (CEST) MRI

Besides spectroscopy, current development of chemical

exchange saturation transfer (CEST) MRI techniques in

cardiovascular research could allow multiplexed molecular

imaging in a single session [158]. CEST-MRI takes

advantage of the transfer of magnetization from endoge-

nous macromolecules, chemical contrast agents or engi-

neered reporter genes with nearby water molecules to

generate contrast on MRI, with a higher sensitivity com-

pared to MRS [91].

Perspectives: fast acquisitions and multimodal
imaging

Improving imaging speed: parallel imaging,

compressed sensing (CS) and cryoprobes

An important issue when considering MRI imaging of

small animals is the need to simplify the manipulations,

especially by shortening acquisition time of sequences.

Various approaches have been studied for that purpose.

Here, we describe those that are currently the most suc-

cessful in mice.

Parallel imaging exploits the multiple elements of a

phased array coil. Each element is associated with an

independent radiofrequency pathway whose signals can be

processed and combined together. A combination of such

overlapping multiple receiver coil elements can be utilized

to improve the signal-to-noise ratio and allows to speed up

acquisitions as the number of spatial encoding steps can be

decreased and conventional Fourier encoding reduced

[40, 124].

Other techniques aim to specifically reduce the amount

of acquired data without degrading the image quality.

Indeed, compressed sensing (CS) allows to reconstruct

images from significantly fewer measurements than were

traditionally thought necessary, by exploiting the redun-

dancy of the image in space or time. Signals and images are

reconstructed with good accuracy from these measure-

ments through a nonlinear procedure. The increasing and

successful use of this method to improve cardiovascular

MRI characterization of small animal models suggests that

it will continue to expand in the near future.

Cryoprobe is a technology where the RF coil and/or

preamplifier are cooled with a stream of Helium gas. As a

consequence, the coil performance is improved and the

level of thermal noise generated by the associated elec-

tronics is reduced. This allows significantly shorter mea-

surement times and improvement of in vivo resolution

compared to room temperature conventional probes. If its

use may reduce the available space within the magnet,

studies have shown that cardiovascular studies on small

animals with a cryoprobe were feasible at HF [167].

Multimodal imaging

Now that several HF MRI sequences are routinely used for

the characterization of murine models, their combination to

get fundamental energetics, functional and anatomic car-

diac information for the same animal promises to be an

important in vivo tool for assessing the physiological rel-

evance of structural and functional modifications and the

46 Page 12 of 20 Basic Res Cardiol (2016) 111:46

123



usefulness of therapeutic interventions. Besides the clas-

sical coupling of 1H-MRI with MRS of other nuclei to get

spatially encoded metabolic information, several other

studies combining different imaging modalities on the

same animal models have recently exemplified the power

multimodal imaging [25, 105, 160, 161].

Beyond the use of multimodality MRI examination,

the combination of MRI with another imaging technol-

ogy such as positron emission tomography (PET) results

in a promising hybrid molecular imaging tool, taking

advantage of both the high-resolution cardiovascular

imaging of MRI and the high sensitivity of PET for

sparse molecular or cellular targets. Compared to com-

puted tomography (CT) imaging, classically combined

with PET, MRI is more flexible due to its plurality of

sequences and offers improved contrast [157, 171]. PET/

MRI also enables dual target molecular imaging by

simultaneous use of MRI agents [146]. While PET and

MR imaging can be done sequentially with offline fusion

of data, newer scanners allow for synchronous data

acquisitions in mice (Fig. 8).

Integrating PET and MRI technologies is more complex

than the evolution towards multimodality PET-CT due to

the presence of the magnetic field, explaining the slow

progress to efficient systems. Historically, the first

approach for simultaneous PET/MR used optical fibers

guiding the scintillation light to the photomultiplier

tubes—important elements of standard PET detectors—

outside the MRI [127]. Further improvements, mainly

initiated by the advent of avalanche photodiodes allowed

the operation of magnetic field insensitive PET detectors

inside the MRI bore [172].

Sequential [95, 146] or combined use of PET and MRI

[31, 97] has been reported to study various issues on the mouse

models of cardiovascular diseases atHF. In light of this success,

manufacturers will probably propose more automated tools for

combined PET/MRI imaging in the near future.

Conclusions

We provided a comprehensive overview of HF MRI

sequences available for cardiovascular investigation in

mice, with practical information and reference literature for

researchers wishing to implement this tool in their practice.

Despite the many challenges encountered when moving

to higher field strength and small animal imaging, HF MRI

has undoubtedly become an essential technique in cardio-

vascular research, as evidenced by the extensive literature on

the subject in recent years. Because of the huge ongoing

development in the field, further refinement of the technique

will allow even wider opportunities in basic animal research.
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